Weak Acid vs. Strong Acid

1. What is the $\operatorname{Br} \Phi$ nsted-Lowry defintion of an acid?

A substance that donates H^{+}
2. Write the generalized equation for the dissociation of an acid.

The most complete description of an acid dissociating includes water. Water serves as the base, accepting the H^{+}from the HA.

Though the acid doesn't just spontaneously fall apart... this reaction is typically simplified to...

$$
H A_{(a q)} \rightleftharpoons H_{(a q)}^{+}+A_{(a q)}^{-}
$$

Where the H^{+}represents the hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$.
3. What is K_{a} ?
K_{a} is the acid dissociation constant.

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{[\mathrm{HA}]} \text { which can be simplified to } K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{AA}^{-}\right]}{[H A]}
$$

4. What defines the strength of an acid?

How far to the right the equilibrium position of the acid dissociation lies.

The larger the K_{a} value the stronger the acid.
5. What are some properties of a strong acid?
a. Equilibrium lies so far to the right that dissociation is said to go to completion.

$$
[\mathrm{HA}]=\left[\mathrm{H}^{+}\right] \text {produced }
$$

b. Strong acids have very large K_{a} values.
c. Strong acids yield conjugate bases that are weaker than water. These conjugates are no more than spectator ions in solution therefore they have no affect on the pH of a solution.
6. List 7 strong acids
a. HCl
b. HBr
c. HI
d. HClO_{4}
e. HClO_{3}
f. $\mathrm{H}_{2} \mathrm{SO}_{4}$
g. HNO_{3}
7. What are some properties of a weak acid?
a. Equilibrium lies far to the left

$$
[\mathrm{HA}] \gg\left[\mathrm{H}^{+}\right] \text {produced }
$$

b. Have very small K_{a} values.
c. Weak acids yield a conjugate base that is stronger than water. This means they can affect the pH of a solution.
8. How can you tell if you are dealing with a weak acid?

It is not one of the seven strong acids listed above.
9. What is percent dissociation?

It is the percent of the original acid solution that dissociated.

$$
\% \text { dissociation }=\frac{\text { amount dissociated }}{\text { initial }[]} \times 100 \%
$$

10. An acid, HX , is 25% dissociated in water. If the equilibrium concentration of HX is 0.30 M , calculate K_{a} for HX .

This question is slightly more complicated in solving methodology. Don't get caught up in the many layers of the question - rather just start where you normally would.

$$
\begin{gathered}
H X_{(a q)} \rightleftharpoons H_{(a q)}^{+} X_{(a q)}^{-} \\
K_{a}=\frac{\left[X^{-}\right]\left[H^{+}\right]}{[H X]}
\end{gathered}
$$

$H X_{(a q)} \rightleftharpoons$			
I	Y	$H^{+}{ }_{(a q)}$	$+X^{-}(a q)$
C	$-x$	$+x$	0
E	$Y-x$	x	$+x$

$$
K_{a}=\frac{\left[X^{-}\right]\left[H^{+}\right]}{[H X]}=\frac{(x)(x)}{(Y-x)}
$$

You now have the basis for what you are going to solve for. The only pieces missing to solve for K_{a} are x and Y. Let's see what other information we have.

The equilibrium concentration of HX is 0.30 M .
This means that: $Y-x=0.30 \mathrm{M}$

We also know that HX has a \% dissociation of 25\%. This means that:

$$
\begin{aligned}
& \text { the cmount dissociated } \frac{x}{Y}=0.25 \\
& \text { the initial concentration }
\end{aligned}
$$

With two equations and two unknowns we can easily solve!

$$
\begin{aligned}
& \frac{x}{Y}=0.25 \rightarrow x=0.25 \mathrm{Y} \\
& \quad Y-x=0.30 \mathrm{M} \rightarrow Y-0.25 \mathrm{Y}=0.30 \mathrm{M}
\end{aligned}
$$

$$
Y=0.40 \mathrm{M}
$$

$$
x=0.25 Y \rightarrow x=(0.25)(0.40)
$$

$$
x=0.100 \mathrm{M}
$$

Now you have the values needed to solve for K_{a}

$$
K_{a}=\frac{\left[X^{-}\right]\left[H^{+}\right]}{[H X]}=\frac{(x)(x)}{(Y-x)}=\frac{(0.100)(0.100)}{(0.30)}=0.033
$$

This problem is often overwhelming for students. If you try to be as methodical as possible - you will have a clearer perspective when looking at a question that looks like it has a lot of disconnected information. Follow the data given - it will show you the way to the answer.

